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Pulsatile Flow of Blood through a Porous Medium
under Periodic Body Acceleration
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Pulsatile flow of blood through a porous medium has been studied studied under
the influence of body acceleration. With the help of Laplace and finite Hankel
transforms, analytic expressions for axial velocity, fluid acceleration, flow rate,
and shear stress have been obtained.

1. INTRODUCTION

In situations like traveling in vehicles or aircraft, operating a jackhammer,
or the sudden movements of the body during sports activities, the human
body experiences external body acceleration. Prolonged exposure of a healthy
human body to external acceleration may cause serious health problem such
as headache, increase in pulse rate, and loss of vision on account of distur-
bances in blood flow (Majhi and Nair, 1994).

In some pathological situations, the distribution of fatty cholesterol
and artery-clogging blood clots in the lumen of the coronary artery can be
considered as equivalent to a fictitious porous medium (Dash et al., 1996).

The main idea of our work is to study these phenomena mathematically
and to obtain analytic expressions for axial velocity, flow rate, fluid accelera-
tion, and shear stress.

2. MATHEMATICAL FORMULATION

Consider the motion of blood as an incompressible Newtonian fluid
through a porous medium. We consider the flow as axially symmetric, pulsa-
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tile, and fully developed. The pressure gradient and body acceleration G are
given by

2
p
z

5 A0 1 A1 cos(vt), t $ 0 (1)

G5 a0 cos (v1t 1 f), t $ 0 (2)

where A0 is the steady-state part of the pressure gradient, A1 is the amplitude
of the oscillatory part, v 5 2pf, with f is the heart pulse frequency, a0 is the
amplitude of body acceleration, v1 5 2pf1, with f1 the body aceleration
frequency, f is its phase difference, z is the axial distance, and t is time.
Ahmadi and Manvi (1971) derived a general equation of motion for the flow
of a viscous fluid through a porous medium. The porous material containing
the fluid is in fact a nonhomogeneous medium. For the sake of analysis, it
is possible to replace it with a homogeneous fluid which has dynamical
poroperties equivalant to the local averages of the original nonhomogeneous
medium. Under the above assumptions, the equation of motion for flow as
discussed by Ahmadi and Manvi (1971) in cylindrical polar coordinates can
be written in the form

r
u
t

5 A0 1 A1 cos(vt) 1 a0 cos(v1t 1 f) 1 m 12u
r 2 1

1
r

u
r2

2
m
K

m 1 rg cos u (3)

where u is velocity in the axial direction, r and m are the density and viscosity
of blood, K is the permeability of the isotropic porous medium, and r is the
radial coordinate. The tube makes angle u with the vertical direction.

Let us introduce the following nondimensional quantities:

u* 5
u

vR
, r* 5

r
R

, t* 5 tv , A*0 5
R

mv
A0, A*1 5

R
mv

A1

a*0 5
R

mv
a0 , z* 5

z
R

, g* 5
Rr
mv

g , K* 5
K
R2

In terms of these variables, equation (3) becomes (dropping the asterisks)

a2 u
t

5 A0 1 A1 cos(t) 1 a0 cos(bt 1 f) 1
2u
r 2 1

1
r

u
r

2
1
K

u 1 g cos u (4)
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where a 5 R!vr/m is the Womersley parameter, b 5 v1/v, and R is the
radius of the pipe.

We assume that at t , 0, only the pumping action of the heart is present
and at t 5 0, the flow in the artery corresponds to the instantaneous pressure
gradient, i.e., 2 p/z 5 A0 1 A1 1 g cos u. As a result, the flow velocity
at t 5 0 is given by (Ahmadi and Manvi, 1971)

u(r, 0) 5
(A0 1 A1 1 g cos u)

h2 F1 2
I0(hr)
I0(h) G (5)

where h 5 !(1/K ) and I0 is a modified Bessel function of first kind of order
zero. When K → `, we obtain the velocity of the classical Hagen–Poiseuille
flow (Bird et al., 1987):

u(r, 0) 5
A0 1 A1 1 g cos u

4
(1 2 r 2) (6)

The initial and boundary conditions for our problem are

u(r, 0) 5
A0 1 A1 1 g cos u

h2 F1 2
I0(hr)
I0(h) G (7a)

u(r, t) 5 0 at r 5 1 (7b)

u(0, t) is finite at r 5 0 (7c)

3. REQUIRED INTEGRAL TRANSFORMS

If f (r) satisfies Dirichlet conditions in closed interval (0, 1) and if its
finite Hankel transform (Senddon, 1951, p. 82) is defined to be

f*(ln) 5 #
1

0

rf(r)J0(rln) dr (8)

where ln are the roots of the equation J0(r) 5 0, then at each point of the
interval at which f(r) is continuous,

f(r) 5 2 o
`

n51
f*(ln)

J0(rln)
J2

1(ln)
(9)

where the sum is taken over all positive roots of J0(r) 5 0, and J0 and J1

are Bessel function of first kind.
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The Laplace transform of any function is defined as

f 8(s) 5 #
`

0

e2stf(t) dt, Re s . 0 (10)

4. ANALYSIS

The consecutive application of finite Hankel and Laplace transforms
(Sneddon 1951) to the partial differential equation (4) and the initial and
boundary conditions (7) leads to an analytic equation whose solution can be
found and the inversion of which gives the final solution as

u(r, t) 5 2 o
`

n51

J0(lnr)
lnJ1(ln)

HA0 1 g cos u
l2

n 1 h2 1
A1[(l2

n 1 h2) cos t 1 a2 sin t]

(l2
n 1 h2)2 1 a4

1
a0[(l2

n 1 h2) cos (bt 1 f) 1 a2b sin (bt 1 f)]

(l2
n 1 h2)2 1 b2a4

2 e2(1/a2)(l2
n1h2)t F2

A1

l2
n 1 h2 1

A1(l2
n 1 h2)

(l2
n 1 h2)2 1 a4

1
a0 [(l2

n 1 h2) cos f 1 a2 sin f]

(l2
n 1 h2)2 1 a4 GJ (11)

Corollary. When K → ` and u → 908 the solution given by (11) reduces
to the case considered by Chaturani and Palanisamy (1991).

The expression for the flow rate Q can be written as

Q 5 2 #
1

0

ru dr (12)

then

Q(r, t) 5 4 o
`

n51

1
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n
HA0 1 g cos u

l2
n 1 h2 1

A1[(l2
n 1 h2) cos t 1 a2 sin t]

(l2
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1
a0[(l2
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(l2
n 1 h2)2 1 b2a4

2e2(1/a2)(l2
n1h2)t F2

A1

l2
n 1 h2 1

A1(l2
n 1 h2)

(l2
n 1 h2)2 1 a4
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1
a0[(l2

n 1 h2) cos f 1 a2 sin f]

(l2
n 1 h2)2 1 a4 ]GJ (13)

The expression for the shear stress t can be obtained from

t 5 u/r (14)

t(r, t) 5 2 o
`

n51

J1(lnr)
J1(ln)

HA0 1 g cos u
l2

n 1 h2 1
A1[(l2

n 1 h2) cos t 1 a2 sin t]

(l2
n 1 h2)2 1 a4

1
a0[(l2

n 1 h2) cos (bt 1 f) 1 a2b sin (bt 1 f)]

(l2
n 1 h2)2 1 b2a4

2 e2(1/a2)(l2
n1h2)t F2

A1

l2
n 1 h2 1

A1(l2
n 1 h2)

(l2
n 1 h2)2 1 a4

1
a0 [(l2

n 1 h2) cos f 1 a2 sin f]

(l2
n 1 h2)2 1 a4 GJ (15)

Similarly, the expression for fluid acceleration F can be obtained from
the relationship

F 5 u/t (16)

Then

F(r, t) 5 2 o
`

n51

J0(lnr)
lnJ1(ln)

HA1[2(l2
n 1 h2) sin t 1 a2 cos t]

(l2
n 1 h2)2 1 a4

1
a0[2b(l2

n 1 h2) sin(bt 1 f) 1 a2b2 sin(bt 1 f)]

(l2
n 1 h2)2 1 b2a4

1
1
a2 (l2

n 1 h2)e2(1/a2)(l2
n1h2)t F2

A1

(l2
n 1 h2)

1
A1(l2

n 1 h2)

(l2
n 1 h2)2 1 a4

1
a0[(l2

n 1 h2) cos f 1 a2 sin f]

(l2
n 1 h2)2 1 a4 GJ (17)
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